एक गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल $\frac{13}{12}$ है तथा उनका गुणानफल $1$ है, तो सार्व अनुपात तथा पदों को ज्ञात कीजिए ?
Let $\frac{a}{r}, a,$ ar be the first three terms of the $G.P.$ Then
$\frac{a}{r}+a r+a=\frac{13}{12}$ ........$(1)$
and $\left(\frac{a}{r}\right)(a)(a r)=-1$ ........$(2)$
From $(2),$ we get $a^{3}=-1,$ i.e., $a=-1$ (considering only real roots)
Substituting $a=-1$ in $(1),$ we have
$-\frac{1}{r}-1-r=\frac{13}{12}$ or $12 r^{2}+25 r+12=0$
This is a quadratic in $r$, solving, we get $r=-\frac{3}{4}$ or $-\frac{4}{3}$
Thus, the three terms of $G.P.$ are $: \frac{4}{3},-1, \frac{3}{4}$ for $r=\frac{-3}{4}$ and $\frac{3}{4},-1, \frac{4}{3}$ for $r=\frac{-4}{3}$
माना $a _{1}, a _{2}, \ldots \ldots, a _{10}$ एक गुणोत्तर श्रेढ़ी है। यदि $\frac{ a _{3}}{ a _{1}}=25$, तो $\frac{ a _{9}}{ a _{5}}$ बराबर है
समीकरण $1 + a + {a^2} + {a^3} + ....... + {a^x}$ $ = (1 + a)(1 + {a^2})(1 + {a^4})$ के लिए $x$ का मान है
गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
$x^{3}, x^{5}, x^{7}, \ldots n$ पदों तक $($ यदि $x \neq\pm 1)$
उस अनन्त गुणोत्तर श्रेणी का, जिसका सार्वअनुपात $r$ हो, योग ज्ञात किया जा सकता है
यदि $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + .......\infty $, तो $r$ का मान होगा