यदि ${S_n}$ समान्तर श्रेणी के $n$ पदों का योगफल दर्शाता हो, तो $({S_{2n}} - {S_n})$ का मान है
$2{S_n}$
${S_{3n}}$
$\frac{1}{3}{S_{3n}}$
$\frac{1}{2}{S_n}$
यदि किसी चतुर्भुज के कोण समान्तर श्रेणी में हैं और उनका सार्वअन्तर ${10^o}$ हो, तो चतुर्भुज के कोण होंगे
माना $a_1=8, a_2, a_3, \ldots a_n$ एक $A.P.$ हैं। यदि इसके प्रथम चार पदों का योग $50$ है तथा इसके अन्तिम चार पदों का योग $170$ है, तब इसके मध्य दो पदों का गुणनफल _____________हैं।
अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ जहाँ $n>2$
यदि $A =\left\{1, a _1, a _2 \ldots \ldots a _{18}, 77\right\}$ पूर्णांको का एक समुच्चय है जिसमें $1 < a _1 < a _2 < \ldots . . < a _{18} < 77$ है। माना समुच्चय $A + A =\{ x + y : x , y \in A \}$ में ठीक $39$ अवयव है। तब $a_1+a_2+\ldots . .+a_{18}$ का मान होगा
यदि $a$ और $b$के बीच का समान्तर माध्य $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$है, तो $n$ का मान होगा