अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए

$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ जहाँ $n>2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n\,>\,2$

$\Rightarrow a_{3}=a_{2}-1=2-1=1$

$a_{4}=a_{3}-1=1-1=0$

$a_{5}=a_{4}-1=0-1=-1$

Hence, the first five terms of the sequence are $2,2,1,0$ and $-1$ 

The corresponding series is $2+2+1+0(-1)+\ldots$

Similar Questions

$2$ तथा $38$ के बीच $n$ समांतर माध्यों को रखने पर परिणामी श्रेणी का योगफल $200$ है, तब $n$ का मान है

यदि $m$ समान्तर श्रेणियों के $n$ पदों के योग क्रमश: ${S_1},\;{S_2},\;{S_3},$……${S_m}$ हैं और इनके प्रथम पद $1,\;2,\;3,$…..$,m$ और सार्वअन्तर क्रमश: $1,\;3,\;5,$……$2m - 1$ हों, तो ${S_1} + {S_2} + {S_3} + ....... + {S_m}$ का मान है

${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ..... + {\log _{\sqrt[{16}]{3}}}x = 36$ का हल है

संख्याओं के दो समूह $a,\;2b$ व $2a,\;b$, (जहाँ $a,\;b \in R$) के बीच $n$ समान्तर माध्य स्थापित किये गये हैं। यदि इन संख्याओं के दोनों समूहों के लिये $m$ वाँ समान्तर माध्य बराबर हो, तो $a:b$ है

किसी समांतर श्रेणी के $m$ तथा $n$ पदों के योगफलों का अनुपात $m^{2}: n^{2}$ है तो दर्शाइए कि $m$ वें तथा $n$ वें पदों का अनुपात $(2 m-1):(2 n-1)$ है।