If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is

  • A

    $x\,(3 - i),\,x \in R$

  • B

    $\frac{x}{{3 + i}},\,x \in R$

  • C

    $x(3 + i),\,x \in R$

  • D

    $x( - 3 + i),\,x \in R$

Similar Questions

If $\frac{{2{z_1}}}{{3{z_2}}}$ is a purely imaginary number, then $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$ =

If $z$ is a complex number satisfying $|z|^2 - |z| - 2 < 0$, then the value of $|z^2 + z sin \theta|$ , for all values of $\theta$ , is

If $z_1$ is a point on $z\bar{z} = 1$ and $z_2$ is another point on $(4 -3i)z + (4 + 3i)z -15 = 0$, then $|z_1 -z_2|_{min}$ is (where $ i = \sqrt { - 1}$ )

If ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ and $z$ is a complex number such that $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4},$ then the value of $|z - 7 - 9i|$ is equal to

  • [IIT 1990]

The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$