If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to

  • [IIT 2000]
  • A

    $\pi $

  • B

    $ - \pi $

  • C

    $ - \frac{\pi }{2}$

  • D

    $\frac{\pi }{2}$

Similar Questions

If $arg\,(z) = \theta $, then $arg\,(\overline z ) = $

For a non-zero complex number $z$, let $\arg ( z )$ denote the principal argument with $-\pi<\arg ( z ) \leq \pi$. Then, which of the following statement (s) is (are) $FALSE$ ?

$(A)$ $\arg (-1- i )=\frac{\pi}{4}$, where $i =\sqrt{-1}$

$(B)$ The function $f: R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all $t \in R$, is continuous at all points of $R$, where $i=\sqrt{-1}$

$(C)$ For any two non-zero complex numbers $z_1$ and $z_2$, $\arg \left(\left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)\right.$ is an integer multiple of $2 \pi$.

$(D)$ For any three given distinct complex numbers, $z_1, z_2$ and $z_3$, the locus of the point $z$ satisfying the condition $\arg \left(\frac{\left( z - z _1\right)\left( z _2- z _3\right)}{\left( z - z _3\right)\left( z _2- z _1\right)}\right)=\pi$, lies on a straight line

  • [IIT 2018]

Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$

Let $z$ be a complex number such that $\left| z \right| + z = 3 + i$ (where $i = \sqrt { - 1} $). Then $\left| z \right|$ is equal to

  • [JEE MAIN 2019]

Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then