यदि$z$ एक सम्मिश्र संख्या हो, तो निम्न में से कौन सा सम्बन्ध सत्य नहीं है
$|{z^2}|\, = \,|z{|^2}$
$|{z^2}|\, = \,|\bar z{|^2}$
$z = \bar z$
${\bar z^2} = {\bar z^2}$
यदि $z$ पूर्णत: वास्तविक संख्या इस प्रकार हो कि ${\mathop{\rm Re}\nolimits} (z) < 0$, तब $arg(z)$=
माना $w(\operatorname{Im} w \neq 0)$ एक सम्मिश्र संख्या है, तो सभी सम्मिश्र संख्याओं $z$ का समुच्चय, जो किसी वास्तविक संख्या $k$ के लिए, समीकरण $w -\overline{ w } z = k (1-z)$ को संतुष्ट करता है
$z$ का वह मान जिसके लिए $|z + i|\, = \,|z - i|$ है
यदि ${z_1}$व${z_2}$दो सम्मिश्र संख्यायें इस प्रकार हों कि ${z_1} \ne {z_2}$ एवं $|{z_1}|\, = \,|{z_2}|$. यदि ${z_1}$में धनात्मक वास्तविक भाग है एवं ${z_2}$ में ऋणात्मक काल्पनिक भाग है, तो $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$हो सकता है
माना एक सम्मिश्र संख्या $z$ इस प्रकार है कि $| z |+ z =3+ i ($ जहाँ $i =\sqrt{-1})$, तो $| z |$ बराबर है