मापांक और कोणांक ज्ञात कीजिए
$z=-1-i \sqrt{3}$
$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$
On squaring and adding, we obtain
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$\Rightarrow r^{2}=4 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2 \quad[\text { Conventionally }, r>0]$
$\therefore$ Modulus $=2$
$\therefore 2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
since both the values of $\sin \theta$ and $\cos \theta$ negative and $\sin \theta$ and $\cos \theta$ are negative in $III$ quadrant,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Thus, the modulus and argument of the complex number $-1-\sqrt{3} i$ are $2$ and $-\frac{2 \pi}{3}$ respectively.
$\frac{{1 + i}}{{1 - i}}$के कोणांक तथा मापांक क्रमश: हैं
यदि $\frac{{z - i}}{{z + i}}(z \ne - i)$ एक पूर्णत: अधिकल्पित संख्या है, तब $z.\bar z$ बराबर है
$1 + i$ का संयुग्मी है
समीकरण $|1-i|^{x}=2^{x}$ के शून्येत्तर पूर्णाक मूलों की संख्या ज्ञात कीजिए।
यदि $\alpha$ और $\beta$ भिन्न सम्मिश्र संख्याएँ हैं जहाँ $|\beta|=1,$ तब $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ का मान ज्ञात कीजिए