यदि $Z$ तथा $W$ दो ऐसी सम्मिश्र संख्याएँ है कि $| ZW |=1$ तथा $\arg ( z )-\arg ( w )=\frac{\pi}{2}$, तो
$\bar zw\,\, = \,i$
$z\bar w\,\, = \,\frac{{ - 1 + i}}{{\sqrt 2 }}$
$z\bar w\,\, = \,\frac{{1 - i}}{{\sqrt 2 }}$
$\bar zw\,\, = - \,i$
सभी $\alpha \in R$ के समुच्चय, जिसके लिए $w=\frac{1+(1-8 \alpha) z}{1-z}$ सभी $z \in C$ के लिए, जो कि $|z|=1$ तथा $R e\, z \neq 1$ को संतुष्ट करते हैं, मात्र एक काल्पनिक संख्या है, है
यदि ${z_1} = 1 + 2i$ और ${z_2} = 3 + 5i$, तब${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$=
यदि $(3 + i)z = (3 - i)\bar z,$ तब सम्मिश्र संख्या $z$ है
यदि$z$ एक सम्मिश्र संख्या है, तब सदिश $z$ तथा $ - iz$ के मध्य कोण होगा
यदि $z_{1}=2-i, z_{2}=1+i,\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$ का मान ज्ञात कीजिए।