यदि $\frac{{z - i}}{{z + i}}(z \ne - i)$ एक पूर्णत: अधिकल्पित संख्या है, तब $z.\bar z$ बराबर है
$0$
$1$
$2$
इनमें से कोई नहीं
सम्मिश्र संख्या$z$ के लिए $z + \bar z$ व $z\,\bar z$ में
यदि $\sqrt 3 + i = (a + ib)(c + id)$, तब ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ का मान है
$\left( {\frac{{1 - i}}{{1 + i}}} \right)$का कोणांक होगा
माना $a \neq b$ दो शून्येत्तर वास्तविक संख्याएँ है। तो समुच्चय
$X=\left\{z \in C: \operatorname{Re}\left(a z^2+b z\right)=a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$
में अवयवों की संख्या है
माना $z$ व$w$ दो अशून्य सम्मिश्र संख्यायें इस प्रकार हैं कि $|z|\, = \,|w|$ व $arg\,z + arg\,w = \pi $, तो $z$ बराबर है