જો $\frac{{z - i}}{{z + i}}(z \ne - i)$ એ શુદ્ધ કાલ્પનિક સંખ્યા હોય તો $z.\bar z$ = . . . .
$0$
$1$
$2$
એકપણ નહીં.
જો $z = x + iy$ હોય તો $|z - 5|$ = . . . .
બે સંકર સંખ્યા ${z_1},{z_2}$ માટે, $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ તો
સમીકરણ $|z| - z = 1 + 2i$ નો ઉકેલ મેળવો.
વિધાનો
વિધાન $I$: કોઈ બે શુન્યેતર સંકર સંખ્યાઓ $z_1, z_2$
માટે $\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ અને
વિધાન $II$ : જો $x, y, z$ એ ત્રણ ભિન્ન સંકર સંખ્યાઓ હોય તથા $\mathrm{a}, \mathrm{b}, \mathrm{c}$ એ ત્રણ ધન વાસ્તવિક સંખ્યાઓ એવી હોય કે જેથી
$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$ તો $\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$
જો સંકર સંખ્યા $z$ આપેલ છે કે જેથી $|z| < 2,$ હોય તો $|iz + 6 -8i|$ ની મહત્તમ કિમત મેળવો.