જો $z$ એ સંકર સંખ્યા છે કે જેથી ${z^2} = {(\bar z)^2} $ તો . . .
$z$ એ શુદ્ધ વાસ્તવિક સંખ્યા છે .
$z$ એ શુદ્ધ કાલ્પનિક સંખ્યા છે
$z$ એ શુદ્ધ કાલ્પનિક અથવા શુદ્ધ વાસ્તવિક સંખ્યા છે .
એકપણ નહીં.
જો $z$ અને $w$ સંકર સંખ્યા છે કે જેથી $|zw| = 1$ અને $arg(z) -arg(w) =\frac {\pi }{2},$ થાય તો .........
ધારો કે $\alpha$ અને $\beta$ એ અનુક્રમે સમીકરણ $(\bar{z})^2+|z|=0, z \in \mathrm{C}$ ના તમામ શૂન્યેતર ઉકેલોના સરવાળા તથા ગુણાકાર દર્શાંવે છે. તો $4\left(\alpha^2+\beta^2\right)=$ ..........
જો સંકર સંખ્યા $z$ આપેલ છે કે જેથી $|z| < 2,$ હોય તો $|iz + 6 -8i|$ ની મહત્તમ કિમત મેળવો.
જો સંકર સંખ્યાઓ $z_1$, $z_2$ એવા મળે કે જેથી $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ અને $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, હોય તો $|Arg z_1 -Arg z_2|$ ની કિમત મેળવો
જો $z_1 , z_2$ અને $z_3, z_4$ એ $2$ અનુબધ્ધ સંકર સંખ્યાની જોડ હોય તો , $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ = .......