જો $z_1 , z_2$ અને $z_3, z_4$ એ $2$ અનુબધ્ધ સંકર સંખ્યાની જોડ હોય તો , $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ = .......
$0$
$\frac{\pi}{2}$
$\frac{3\pi}{2}$
$\pi $
જો $|z_1| = 2 , |z_2| =3 , |z_3| = 4$ અને $|2z_1 +3z_2 +4z_3| =9$ ,હોય તો $|8z_2z_3 +27z_3z_1 +64z_1z_2|$ ની કિમત મેળવો
જો સંકર સંખ્યા ${z_1}$ અને ${z_2}$ માટે, $arg({z_1}/{z_2}) = 0,$ તો $|{z_1} - {z_2}|$ = . . .
જો કોઇક સંકર સંખ્યા $z$ માટે $\left| z \right| \ge 2$ થાય,તો $\left| {z + \frac{1}{2}} \right|$ નું ન્યૂનતમ મૂલ્ય મેળવો. .
જો ${Z_1} \ne 0$ અને $Z_2$ એવી સંકર સંખ્યા હોય કે જેથી $\frac{{{Z_2}}}{{{Z_1}}}$ શુધ્ધ કાલ્પનિક સંખ્યા થાય તો $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ ની કિમત મેળવો.
$\mid 1$ - $\left.\mathrm{i}\right|^x=2^x$ ના ઉકેલોની સંખ્યા $\alpha$ અને $\beta=\left(\frac{|z|}{\arg (\mathrm{z})}\right)$, જ્યાં $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ તો $(\alpha, \beta)$ નું $4 x-3 y=7$ થી અંતર મેળવો.