If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=
$0$
$1$
$x + y + z$
$x + y + z + 2$
The value of ${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }}$ is
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are