If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

  • A

    $0$

  • B

    $1$

  • C

    $x + y + z$

  • D

    $x + y + z + 2$

Similar Questions

The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is

The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17}  $ is

${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $