If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

  • A

    $0$

  • B

    $1$

  • C

    $x + y + z$

  • D

    $x + y + z + 2$

Similar Questions

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$

The square root of $\sqrt {(50)} + \sqrt {(48)} $ is

If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $

If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is