જો ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ તો $xyz=$
$0$
$1$
$x + y + z$
$x + y + z + 2$
${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
જો ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ તો $m =$
જો ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$ તો $x =$
$\sqrt {(50)} + \sqrt {(48)} $ નું વર્ગમૂળ મેળવો.