$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $
$\sqrt {(5/2)} + \sqrt {(3/2)} $
$\sqrt {(5/2)} - \sqrt {(3/2)} $
$\sqrt {(5/2)} - \sqrt {(1/2)} $
$\sqrt {(3/2)} - \sqrt {(1/2)} $
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is
If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $