$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $
$\sqrt {(5/2)} + \sqrt {(3/2)} $
$\sqrt {(5/2)} - \sqrt {(3/2)} $
$\sqrt {(5/2)} - \sqrt {(1/2)} $
$\sqrt {(3/2)} - \sqrt {(1/2)} $
${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $
${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $
The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ is
If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $