If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is
$0$
$1$
$3$
None of these
The value of ${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ is equal to
The sum $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ is equal to :
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$
The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is
If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to