If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is
$0$
$1$
$3$
None of these
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
The sum $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ is equal to :
If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $