The sum $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ is equal to :
$\frac{11 e }{2}+\frac{7}{2 e }$
$\frac{13 e }{4}+\frac{5}{4 e }-4$
$\frac{11 e }{2}+\frac{7}{2 e }-4$
$\frac{13 e }{4}+\frac{5}{4 e }$
Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.
If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is
The number of integral solutions $x$ of $\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ is
If $3^x=4^{x-1}$, then $x=$
$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval