If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
$\left( {1,\,\,2} \right]$
$\left( { - \infty ,\,2} \right]$
$\left[ {2, + \,\infty } \right)$
None of these
The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is
If ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then
The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then