If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has
One positive integral value
One irrational value
Two positive rational values
All of These
Let $a , b , c$ be three distinct positive real numbers such that $(2 a)^{\log _{\varepsilon} a}=(b c)^{\log _e b}$ and $b^{\log _e 2}=a^{\log _e c}$. Then $6 a+5 b c$ is equal to $........$.
If ${a^2} + 4{b^2} = 12ab,$ then $\log (a + 2b)$ is
The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is