If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has
One positive integral value
One irrational value
Two positive rational values
All of These
The value of ${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9$ is
If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$ $2 x-y=\log _b(\sqrt{1080}),$ then $4 x+5 y$ is equal to. . . .
The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$