${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $

  • A

    $3{\log _2}7$

  • B

    $1 - 3{\log _3}7$

  • C

    $1 - 3{\log _7}2$

  • D

    None of these

Similar Questions

If ${x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > 1$ then the value of ${\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}.....{\log _{{x_n}}}{x_n}^{x_{n - 1}^{{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^{{x_1}}}}}$ is equal to

$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $

The value of ${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9$ is

  • [IIT 2000]

If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to

The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is