જો ${\log _4}5 = a$ અને ${\log _5}6 = b $ તો ${\log _3}2= . . . .$
${1 \over {2a + 1}}$
${1 \over {2b + 1}}$
$2ab + 1$
${1 \over {2ab - 1}}$
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)= . . . .$
જો ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ તો $ x$ ની કેટલી કિમતો મળે કે જે ${\pi \over 4}$ નો ગુણિત છે.
જો ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ તો $x$ ને . . .
ધારો કે $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c,$ $a, b, c \in Z$ પુર્ણાકો છે.$e=\sum_{n=0}^{\infty} \frac{1}{n !} $ હોય તો $a^2-b+c$ ની કિમંત મેળવો.
સરવાળો $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}= ..............$