${\log _{0.2}}{{x + 2} \over x} \le 1$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
$\left( { - \infty ,\,\, - {5 \over 2}} \right] \cup (0, + \infty )$
$\left[ {{5 \over 2}, + \,\infty } \right)$
$( - \infty ,\, - 2) \cup (0, + \,\infty )$
એકપણ નહી.
${\log _2}7$ એ . . . . થાય.
જો ${\log _4}5 = a$ અને ${\log _5}6 = b $ તો ${\log _3}2= . . . .$
જો ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ તો $x$ નો અંતરાલ મેળવો.
જો ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ તો $x = . . . .$
જો ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ તો $ x$ ની કેટલી કિમતો મળે કે જે ${\pi \over 4}$ નો ગુણિત છે.