If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to

  • A

    ${1 \over {2a + 1}}$

  • B

    ${1 \over {2b + 1}}$

  • C

    $2ab + 1$

  • D

    ${1 \over {2ab - 1}}$

Similar Questions

The number of solution $(s)$ of the equation $log_7(2^x -1) + log_7(2^x -7) = 1$, is -

If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then

If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is

The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$

Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is