माना कि $AP ( a ; d )$ एक अनंत समान्तर श्रेणी (infinite arithmetic progression) के पदों का समुच्चय (set) है जिसका प्रथम पद $a$ तथा सर्वान्तर (common difference) $d >0$ है। यदि $AP (1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap AP (3 ; 7)=$ $AP ( a ; d )$ है, तब $a + d$ बराबर . . . . .

  • [IIT 2019]
  • A

    $150$

  • B

    $154$

  • C

    $155$

  • D

    $157$

Similar Questions

यदि एक वास्तविक संख्या $x$ के लिए $1$ , $\log _{10}(4 x-2)$ तथा $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ एक समान्तर श्रेढ़ी में है, तो सारणिक $\left|\begin{array}{ccc}2\left( x -\frac{1}{2}\right) & x -1 & x ^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ का मान बराबर है......।

  • [JEE MAIN 2021]

$p,\;q,\;r$ समान्तर श्रेणी में एवं धनात्मक हैं तो वर्ग समीकरण $p{x^2} + qx + r = 0$ के मूल वास्तविक होंगे, यदि

  • [IIT 1995]

$100$ तथा $1000$ के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो $5$ के गुणज हों।

संख्याओं के दो समूह $a,\;2b$ व $2a,\;b$, (जहाँ $a,\;b \in R$) के बीच $n$ समान्तर माध्य स्थापित किये गये हैं। यदि इन संख्याओं के दोनों समूहों के लिये $m$ वाँ समान्तर माध्य बराबर हो, तो $a:b$ है

श्रेणी $\sqrt 2  + \sqrt 8  + \sqrt {18}  + \sqrt {32}  + .........$ के  $24$ पदों का योगफल है