यदि $\tan \left(\frac{\pi}{9}\right), x , \tan \left(\frac{7\pi}{18}\right)$ एक समांतर श्रेढ़ी में हैं तथा $\tan \left(\frac{\pi}{9}\right), y , \tan \left(\frac{5 \pi}{18}\right)$ भी एक समांतर श्रेढ़ी में हैं. तो $| x -2 y |$ बराबर है
$0$
$3$
$4$
$1$
समान्तर श्रेणी के तीन क्रमागत पद इस प्रकार हैं कि उनका योग $18$ तथा उनके वर्गों का योग $158$ है तब इस श्रेणी का महत्तम पद होगा
यदि समीकरण $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रमों के वर्गों के योगफल के बराबर है, तो $b{c^2},\;c{a^2},\;a{b^2}$ होंगे
एक समांतर श्रेणी के प्रथम चार पदों का योगफल $56$ है। अंतिम चार पदों का योगफल $112$ है। यदि इसका प्रथम पद $11$ है, तो पदों की संख्या ज्ञात कीजिए।
श्रेणी $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ का कौन सा पद शुद्ध अधिकल्पित संख्या है
माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :