यदि $\mathrm{z}=\frac{1}{2}-2 \mathrm{i}$, के लिए $|\mathrm{z}+1|=\alpha \mathrm{z}+\beta(1+\mathrm{i}), \mathrm{i}=\sqrt{-1} $है जहाँ $ \alpha, \beta \in \mathrm{R} \text {, }$ है तो $\alpha+\beta$ बराबर है
$-4$
$3$
$2$
$-1$
माना कि $\bar{z}$ एक सम्मिश्र संख्या (complex number) $z$ के सम्मिश्र संयुग्मी (complex conjugate) को निरूपित करता है एवं $i=\sqrt{-1}$ है। सम्मिश्र संख्याओं के सम्मुचय (set of complex numbers) में, समीकरण $\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ के भिन्न मूलों (distinct roots) की संख्या. . . . . .है।
माना $a \neq b$ दो शून्येत्तर वास्तविक संख्याएँ है। तो समुच्चय
$X=\left\{z \in C: \operatorname{Re}\left(a z^2+b z\right)=a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$
में अवयवों की संख्या है
$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ संभव है यदि
यदि $\alpha $ व $\beta $ भिन्न सम्मिश्र संख्याएँ इस प्रकार हैं कि $|\beta | = 1$, तब $\left| {\frac{{\beta - \alpha }}{{1 - \alpha \beta }}} \right|$ =
निम्नलिखित सम्मिश्र संख्याओं का मापांक एवं कोणांक ज्ञात कीजिए।
$\frac{1}{1+i}$