यदि $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _e(123)}{x \log _e(1234)-\left(\tan 1^{\circ}\right)}, x>0$, हैं, तो $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ का निम्नतम मान है
$8$
$4$
$2$
$0$
मान लें कि $N$ एक धनात्मक संख्याओं का समुच्चय हैं। सभी $n \in N$ के लिए मान लें कि
$f_n=(n+1)^{1 / 3}-n^{1 / 3}$ एवं $A=\left\{n \in N : f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ तब
एक फलन $f$, समीकरण $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$, सभी $x \ne 1$ के लिए, को सन्तुष्ट करता है। तो $f(7)$ का मान है
फलन $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ का डोमेन (प्रान्त) है
फलन $f(x)=\frac{\cos ^{-1}\left(\frac{x^2-5 x+6}{x^2-9}\right)}{\log _e\left(x^2-3 x+2\right)}$ का प्रांत है