If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ જ્યાં $\alpha \in R$, હોય, તો $16 \alpha$ નું મૂલ્ય...........છે

  • [JEE MAIN 2022]
  • A

    $1411$

  • B

    $1320$

  • C

    $1615$

  • D

    $1855$

Similar Questions

જો $(x+y)^{n}$ નાં વિસ્તરણમાં બધાજ સહગુણકોનો સરવાળો $4096,$ હોય તો મહતમ સહગુણક મેળવો.

  • [JEE MAIN 2021]

$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$ ના વિસ્તરણમાં $x^{70}$ નો સહગુણક ${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$ છે. તો $p+q$ ની શક્ય કિંમત ........... છે. 

  • [JEE MAIN 2024]

પ્રાકૃતિક સંખ્યા $m,n$ માટે, ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$માટે $a_1= a_2=10,$ તો $(m,n)$ =______. 

  • [AIEEE 2006]

$\left(1+x+x^{2}+x^{3}\right)^{6}$  ના વિસ્તરણમાં $x^{4}$ નો સહગુણક ........ થાય 

  • [JEE MAIN 2020]

જો ${(x - 2y + 3z)^n}$ ના સહગુણકોનો સરવાળો $128$ હોય તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ સહગુણક મેળવો.