If $b _{ n }=\int \limits_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} nx }{\sin x } dx , n \in N$, then

  • [JEE MAIN 2022]
  • A

    $b_{3}-b_{2}, b_{4}-b_{3}, b_{5}-b_{4}$ are in an $A.P.$ with common difference $-2$

  • B

    $\frac{1}{ b _{3}- b _{2}}, \frac{1}{ b _{4}- b _{3}}, \frac{1}{ b _{5}- b _{4}}$ are in an $A.P.$ with common difference $2$

  • C

    $b _{3}- b _{2}, b _{4}- b _{3}, b _{5}- b _{4}$ are in a $G.P.$

  • D

    $\frac{1}{b_{3}-b_{2}}, \frac{1}{b_{4}-b_{3}}, \frac{1}{b_{5}-b_{4}}$ are in an $A.P.$ with common difference $-2$

Similar Questions

Let $f$ be a continuous function defined on $[0,1]$ such that $\int_0^1 f^2(x) d x=\left(\int_0^1 f(x) d x\right)^2$. Then, the range of $f$

  • [KVPY 2016]

Let $I_n=\int_0^{\pi / 2} x^n \cos x d x$, where $n$ is a non-negative integer. Then, $\sum \limits_{n=2}^{\infty}\left(\frac{I_n}{n !}+\frac{I_n-2}{(n-2) !}\right)$ equals

  • [KVPY 2014]

Let $I = \mathop \smallint \limits_0^1 \frac{{\sin x}}{{\sqrt x }}\;dx$ and $\;J = \mathop \smallint \limits_0^1 \frac{{\cos x}}{{\sqrt x }}\;dx$ Then which one of  the following is true?

  • [AIEEE 2008]

$\int\limits_0^1 {(1 + |\sin x|)(a{x^2} + bx + c)dx = \int\limits_0^2 {(1 + |\sin x|)(a{x^2} + bx + c)} } dx$ . So, location of the roots of ${a{x^2} + bx + c}=0$ is

If $[x]$ is the greatest integer $\leq x$, then $\pi^{2} \int_{0}^{2}\left(\sin \frac{\pi \mathrm{x}}{2}\right)(\mathrm{x}-[\mathrm{x}])^{[\mathrm{x}]} \mathrm{d} \mathrm{x}$ is equal to :

  • [JEE MAIN 2021]