$\int\limits_0^1 {(1 + |\sin x|)(a{x^2} + bx + c)dx = \int\limits_0^2 {(1 + |\sin x|)(a{x^2} + bx + c)} } dx$ . So, location of the roots of ${a{x^2} + bx + c}=0$ is

  • A

    At least one real root between $(1, 2)$

  • B

    At least one real root between $(0, 1)$

  • C

    At most one real root between $(0, 2)$

  • D

    Can’t say exactly about the roots

Similar Questions

If $f (x) =$ $\int\limits_0^{\pi /2} \frac{{\ell \,n\,\,(1\,\, + \,\,x\,\,{{\sin }^2}\,\,\theta )}}{{{{\sin }^2}\,\,\theta }}$ $d\, \theta$ , $x \geq 0$ then :

Let $f$ be a continuous function defined on $[0,1]$ such that $\int_0^1 f^2(x) d x=\left(\int_0^1 f(x) d x\right)^2$. Then, the range of $f$

  • [KVPY 2016]

If $\frac{d}{{dx}}\,G\left( x \right) = \frac{{{e^{\tan \,x}}}}{x},\,x \in \left( {0,\pi /2} \right)$, then $\int\limits_{1/4}^{1/2} {\frac{2}{x}} .{e^{\tan \,\left( {\pi \,{x^2}} \right)}}dx$ is equal to

  • [AIEEE 2012]

The true solution set of the inequality,$\sqrt{5x-6-x^2}+\left( \frac{\pi }{2}\int\limits_{0}^{x}{dz} \right)>x\int\limits_{0}^{\pi }{{{\sin }^{2}}xdx}$ is:

The smallest interval $[a,\,\,b]$ such that $\int_0^1 {\frac{{dx}}{{\sqrt {1 + {x^4}} }}} \in [a,\,\,b]$ is given by