Let $I_n=\int_0^{\pi / 2} x^n \cos x d x$, where $n$ is a non-negative integer. Then, $\sum \limits_{n=2}^{\infty}\left(\frac{I_n}{n !}+\frac{I_n-2}{(n-2) !}\right)$ equals
$e^{\pi / 2}-1-\frac{\pi}{2}$
$e^{\pi / 2}-1$
$e^{\pi / 2}-\frac{\pi}{2}$
$e^{\pi / 2}$
Let $f:[0,1] \rightarrow[0, \infty)$ be a continuous function such that $\int_0^1 f(x) d x=10$. Which of the following statements is NOT necessarily true?
A quadratic polynomial $P(x)$ satisfies the conditions, $P(0) = P(1) = 0\, \&\,\int\limits_0^1 {} P(x) dx = 1$. The leading coefficient of the quadratic polynomial is :
Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $x^2+(f(x))^2 \leq 1$ for all $x \in[0,1]$ and $\int_0^1 f(x) d x=\frac{\pi}{4}$ Then, $\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{f(x)}{1-x^2} d x$ equals
If $[x]$ is the greatest integer $\leq x$, then $\pi^{2} \int_{0}^{2}\left(\sin \frac{\pi \mathrm{x}}{2}\right)(\mathrm{x}-[\mathrm{x}])^{[\mathrm{x}]} \mathrm{d} \mathrm{x}$ is equal to :