$2 \le r \le n$ केलिए,$\left({\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$=
$\left( {\begin{array}{*{20}{c}}{n + 1}\\{r - 1}\end{array}} \right)$
$2\,\left( {\begin{array}{*{20}{c}}{n + 1}\\{r + 1}\end{array}} \right)$
$2\,\left( {\begin{array}{*{20}{c}}{n + 2}\\r\end{array}} \right)$
$\left( {\begin{array}{*{20}{c}}{n + 2}\\r\end{array}} \right)$
दो कलश हैं। कलश $A$ में $3$ भिन्न लाल गेंदें हैं तथा कलश $B$ में $9$ भिन्न नीली गेंदें हैं। प्रत्येक कलश में से दो गेंदें यादृच्छया निकालकर दूसरे कलश में डाली गई हैं। यह प्रक्रिया जितने तरीकों से की जा सकती है, वह है
यदि $^{{n^2} - n}{C_2}{ = ^{{n^2} - n}}{C_{10}}$, तो $n = $
'$BHARAT'$ शब्द के अक्षरों से कुल कितने शब्द बनाये जा सकते हैं, जिसमें '$B$' व '$H$' कभी भी एक साथ नहीं आयें
$INVOLUTE$ शब्द के अक्षरों से, अर्थपूर्ण या अर्थहीन प्रत्येक $3$ स्वरों तथा $2$ व्यंजनों वाले, कितने शब्दों की रचना की जा सकती है ?
$6$ व्यंजन व $5$ स्वरों से $4$ व्यंजन एवं $3$ स्वरों के कुल कितने शब्द बनाये जा सकते हैं