यदि $z$ तथा $\omega$ दो सम्मिश्र संख्याएँ हैं, जिनके लिए $|z \omega|=1$ तथा $\arg ( z )-\arg (\omega)=\frac{3 \pi}{2}$ है, तो $\arg$ $\left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ बराबर है : (जहाँ $\arg ( z )$ सम्मिश्र संख्या $z$ के मुख्य कोणांक को दर्शाता है)
$\frac{3 \pi}{4}$
$-\frac{\pi}{4}$
$-\frac{3 \pi}{4}$
$\frac{\pi}{4}$
यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................
यदि $|z|\, = 1,(z \ne - 1)$तथा $z = x + iy,$तब $\left( {\frac{{z - 1}}{{z + 1}}} \right)$=
माना एक सम्मिश्र संख्या $z$ इस प्रकार है कि $| z |+ z =3+ i ($ जहाँ $i =\sqrt{-1})$, तो $| z |$ बराबर है
सम्मिश्र संख्याओं ${z_1}$और ${z_2}$के लिये सत्य कथन
माना कि$z$ एक सम्मिश्र संख्या है, तो समीकरण ${z^4} + z + 2 = 0$निम्न प्रकार का मूल नहीं रख सकता