If $z$ and $\omega$ are two complex numbers such that $|z \omega|=1$ and $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$, then $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ is:

(Here arg(z) denotes the principal argument of complex number $z$ )

  • [JEE MAIN 2021]
  • A

    $\frac{3 \pi}{4}$

  • B

    $-\frac{\pi}{4}$

  • C

    $-\frac{3 \pi}{4}$

  • D

    $\frac{\pi}{4}$

Similar Questions

The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is

  • [AIEEE 2008]

If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is

Let $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$, where $z$ is any non-zero complex number. The set $A = \{ a:\left| z \right| = 1\,and\,z \ne  \pm 1\} $ is equal to

  • [JEE MAIN 2013]

Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.

Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is

  • [JEE MAIN 2023]