Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.
$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$
On squaring and adding, we obtain
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$\Rightarrow r^{2}=4 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2 \quad[\text { Conventionally }, r>0]$
$\therefore$ Modulus $=2$
$\therefore 2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
since both the values of $\sin \theta$ and $\cos \theta$ negative and $\sin \theta$ and $\cos \theta$ are negative in $III$ quadrant,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Thus, the modulus and argument of the complex number $-1-\sqrt{3} i$ are $2$ and $-\frac{2 \pi}{3}$ respectively.
Let ${z_1}$ and ${z_2}$ be two complex numbers with $\alpha $ and $\beta $ as their principal arguments such that $\alpha + \beta > \pi ,$ then principal $arg\,({z_1}\,{z_2})$ is given by
Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )
A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if
For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is
Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$