यदि समीकरण $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1$, $x \in[0, \pi]$ के हलों की संख्या $n$ है तथा $S$ इन सभी हलों का योगफल है, तब क्रमित युग्म $( n , S )$ है
$(3,13 \pi / 3)$
$(2,2 \pi / 3)$
$(2,8 \pi / 9)$
$(3,5 \pi / 3)$
माना $P =\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ तथा $Q =\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ दो समुच्चय हैं, तो
समीकरण $\sin x + \cos x = 2$ के हल होंगे
$(x, y)$ के कितने युग्म समीकरणों $\sin x + \sin y = \sin (x + y)$ तथा $|x| + |y| = 1$ को संतुष्ट करते हैं
यदि $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, तब $\theta = $
समीकरण $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ को सन्तुष्ट करने वाला $\theta $ का व्यापक मान है