જો $\mathrm{n}$ એ સમીકરણ $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$ નાં ઉકેલની સંખ્યા છે અને $S$ એ ઉકેલનો સરવાળો છે તો ક્રમયુક્ત $(\mathrm{n}, \mathrm{S})$ જોડ મેળવો.
$(3,13 \pi / 3)$
$(2,2 \pi / 3)$
$(2,8 \pi / 9)$
$(3,5 \pi / 3)$
સમીકરણ $sin^4x + cos^4x = sinx\, cosx$ ના $[0, 2\pi ]$ માં આવેલ કુલ ઉકેલોની સંખ્યા .... છેઃ
જો સમીકરણ $0 \le x < 2\pi $ તો સમીકરણ $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ ને સંતોષતી $x$ ની વાસ્તવિક કિંમતોની સંખ્યા . . . . . .છે.
જો $sin\, \theta = sin\, \alpha$ હોય તો $sin\, \frac{\theta }{3}$ =
સમીકરણ $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ ના ઉકેલોનો સરવાળો મેળવો.
જો $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ એ મહતમ હોય તો $A$ ની કિમત મેળવો.