જો $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ તો ${A_1}$ =

  • A

    $abc$

  • B

    $0$

  • C

    $1$

  • D

    એકપણ નહી.

Similar Questions

જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = k(a + b + c)({a^2} + {b^2} + {c^2}$ $ - bc - ca - ab)$, તો  $k =$

ધારો ક $A.P$. (સમાંતર શ્રેણી) ના ત્રણ ભિત્ર  ક્રમિક પદો $a, b, c$ માટે રેખાઓ$a x+b y+c=0$ બિંદુ $\mathrm{P}$ પર સંગામી થાય છે તથા $\mathrm{Q}(\alpha, \beta)$ એવું બિંદુ છે કે જેથી સમીકરણ સંહતિ  $x+y+z=6 \text {, }$  ,  $2 x+5 y+\alpha z=\beta $ અને  $x+2 y+3 z=4 $ ને અનંત ઉકેલો મળે. તો $(\mathrm{PQ})^2=. . . .  .  $

  • [JEE MAIN 2024]

જો $a_i^2 + b_i^2 + c_i^2 = 1,\,i = 1,2,3$ અને $a_ia_j + b_ib_j +c_ic_j = 0$ $\left( {i \ne j,i,j = 1,2,3} \right)$ હોય તો નિશ્ચયક  $\left| {\begin{array}{*{20}{c}}
  {{a_1}}&{{a_2}}&{{a_3}} \\ 
  {{b_1}}&{{b_2}}&{{b_3}} \\ 
  {{c_1}}&{{c_2}}&{{c_3}} 
\end{array}} \right|$ ની કિમંત મેળવો.

$\theta \in (0,\pi)$ ની કેટલી કિમંત માટે રેખીય સમીકરણો  $x + 3y + 7z = 0$ ; $-x + 4y + 7z = 0$ ;   $ (sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ ને શૂન્યતર ઉકેલ ધરાવે .

  • [JEE MAIN 2019]

જો $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ તો આપલે પૈકી ક્યો સંબંધ સાચો છે .