यदि $\alpha+\beta+\gamma=2 \pi$ है, तो समीकरण निकाय

$x+(\cos \gamma) y+(\cos \beta) z=0$

$(\cos \gamma) x+y+(\cos \alpha) z=0$

$(\cos \beta) x+(\cos \alpha) y+z=0$

  • [JEE MAIN 2021]
  • A

    का कोई हल नहीं हैं

  • B

    के अनंत हल हैं

  • C

    के ठीक दो हल हैं

  • D

    का अद्वितीय हल हैं

Similar Questions

यदि $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. तब सारणिक $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|$

  • [IIT 2002]

यदि $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$ हो तो $x$ बराबर है

यदि समीकरणों के निकाय $x + y + z = 6$, $x + 2y + 3z = 10,$ $x + 2y + \lambda z = \mu $ का कोई हल नहीं है, तब

रैखिक समीकरण निकाय $x+y+z=5, x+2 y+\lambda^2 z=9$ $\mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$, जहाँ $\lambda, \mu \in \mathrm{R}$ हैं, का विचार कीजिए। तो निम्न में से कौन सा कथन सत्य नहीं है?

  • [JEE MAIN 2024]

यदि समीकरण निकाय

$2 x+3 y+6 z=8$   ;  $x+2 y+a z=5$     ;  $3 x+5 y+9 z=b$  का कोई हल नहीं है, तो $a$ और $b$ के मान है

  • [JEE MAIN 2021]