જો કોઈ વાસ્તવિક $x$ માટે $1, \log _{10}\left(4^{x}-2\right)$ અને $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ એ સમાંતર શ્રેણીમાં હોય  તો  $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]
  • A

    $5$

  • B

    $4$

  • C

    $1$

  • D

    $2$

Similar Questions

સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને $q$ મું પદ $p$ હોય, તો તેનું $r$ મું પદ...... થશે.

જો ${T_r}$ એ સમાંતર શ્રેણીનું ${r^{th}}$ મું પદ દર્શાવે કે જ્યાં $r = 1,\;2,\;3,....$.,જો કોઇક ધન પૂર્ણાંક $m,\;n$ માટે  ${T_m} = \frac{1}{n}$ અને ${T_n} = \frac{1}{m}$, તો ${T_{mn}}$ મેળવો.

  • [IIT 1998]

જો $S_1, S_2$ અને $S_3$ અનુક્રમે સમાંતર શ્રેણીના પ્રથમ $n_1, n_2$ અને $n_3$ પદોના સરવાળા દર્શાવે તો, $\frac{{{S_1}}}{{{n_1}}}\,({n_2}\, - \,{n_3})\,\, + \,\,\frac{{{S_2}}}{{{n_2}}}\,({n_3}\, - \,{n_1})\,\, + \,\,\frac{{{S_3}}}{{{n_3}}}\,({n_1}\, - \,{n_2})\,\, = ....$

$n$ બાજુઓ વાળા એક બહુકોણના અંતઃખૂણાઓ સામાન્ય તફાવત $6^{\circ}$ વાળી એક સમાંતર શ્રેણીમાં છે. જે બહુકોણમાં મોટામાં મોટો અંતઃખૂણો $219^{\circ}$ હોય, તો $n =$ ________.

  • [JEE MAIN 2025]

એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?