If $1, \log _{10}\left(4^{x}-2\right)$ and $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ are in
arithmetic progression for a real number $x$ then the value of the determinant $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ is equal to ...... .
$5$
$4$
$1$
$2$
Let $A B C D$ be a quadrilateral such that there exists a point $E$ inside the quadrilateral satisfying $A E=B E=C E=D E$. Suppose $\angle D A B, \angle A B C, \angle B C D$ is an arithmetic progression. Then the median of the set $\{\angle D A B, \angle A B C, \angle B C D\}$ is
If all interior angle of quadrilateral are in $AP$ . If common difference is $10^o$ , then find smallest angle ?.....$^o$
Let $V_{\mathrm{r}}$ denote the sum of the first $\mathrm{r}$ terms of an arithmetic progression $(A.P.)$ whose first term is $\mathrm{r}$ and the common difference is $(2 \mathrm{r}-1)$. Let
$T_{\mathrm{I}}=V_{\mathrm{r}+1}-V_{\mathrm{I}}-2 \text { and } \mathrm{Q}_{\mathrm{I}}=T_{\mathrm{r}+1}-\mathrm{T}_{\mathrm{r}} \text { for } \mathrm{r}=1,2, \ldots$
$1.$ The sum $V_1+V_2+\ldots+V_n$ is
$(A)$ $\frac{1}{12} n(n+1)\left(3 n^2-n+1\right)$
$(B)$ $\frac{1}{12} n(n+1)\left(3 n^2+n+2\right)$
$(C)$ $\frac{1}{2} n\left(2 n^2-n+1\right)$
$(D)$ $\frac{1}{3}\left(2 n^3-2 n+3\right)$
$2.$ $\mathrm{T}_{\mathrm{T}}$ is always
$(A)$ an odd number $(B)$ an even number
$(C)$ a prime number $(D)$ a composite number
$3.$ Which one of the following is a correct statement?
$(A)$ $Q_1, Q_2, Q_3, \ldots$ are in $A.P.$ with common difference $5$
$(B)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $6$
$(C)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $11$
$(D)$ $Q_1=Q_2=Q_3=\ldots$
Give the answer question $1,2$ and $3.$
The mean of the series $a,a + nd,\,\,a + 2nd$ is