State whether the following are true or false. Justify your answer.
The value of $\sin \theta$ increases as $\theta$ increases.
The value of $\sin \theta$ increases as $\theta$ increases in the interval of $0^{\circ}<\theta<90^{\circ}$ as
$\sin 0^{\circ}=0$
$\sin 30^{\circ}=\frac{1}{2}=0.5$
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\sin 90^{\circ}=1$
Hence, the given statement is true.
In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$
In $\triangle$ $OPQ$, right-angled at $P$, $OP =7\, cm$ and $OQ - PQ =1\, cm$ (see $Fig.$). Determine the values of $\sin Q$ and $\cos Q$.
Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.
$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$