$(\sec A+\tan A)(1-\sin A)=..........$
$\sec A$
$\sin A$
$\cos A$
$\operatorname{cosec} A$
If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.
Evaluate:
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.
State whether the following are true or false. Justify your answer.
The value of $\sin \theta$ increases as $\theta$ increases.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$