$(\sec A+\tan A)(1-\sin A)=..........$

  • A

    $\sec A$

  • B

    $\sin A$

  • C

    $\cos A$

  • D

    $\operatorname{cosec} A$

Similar Questions

If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.

Evaluate:

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.

State whether the following are true or false. Justify your answer.

The value of $\sin \theta$ increases as $\theta$ increases.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$