In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$
Applying Pythagoras theorem for $\triangle ABC ,$ we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(24\, cm )^{2}+(7\, cm )^{2}$
$=(576+49) \,cm ^{2}$
$=625\, cm ^{2}$
$\therefore A C=\sqrt{625} cm =25\, cm$
$(i)\,\sin A\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$
$=\frac{7}{25}$
$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC}$$=\frac{24}{25}$
$(ii)$
$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{A B}{A C}$
$=\frac{24}{25}$
$\cos C=\frac{\text { Side adjacent to } \angle C}{\text { Hypotenuse }}=\frac{B C}{A C}$
$=\frac{7}{25}$
State whether the following are true or false. Justify your answer.
The value of $\cos \theta$ increases as $\theta$ increases
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
Evaluate $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$
If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$