સમાંતર શ્રેણીમાં $T_m = n$ અને $T_n = m$ હોય, તો $T_p$ = ……
$m + n - p$
$m + n$
$m- n+ p$
$m^2 + n^2 - p^2$
અલગ અલગ સમાંતર શ્રેણી કે જેનું પ્રથમ પદ $100$ અને અંતિમ પદ $199$ છે અને સમાન્ય તફાવત પૂર્ણાંક છે. જો આવી સમાંતર શ્રેણીના બધાજ સામાન્ય તફાવતનો સરવાળો મેળવો કે જેમાં ઓછામાં ઓછા $3$ પદો હોય અને વધુમાં વધુ $33$ પદો હોય.
સમાંતર શ્રેણીનું પદ $2$ અને સામાન્ય તફાવત $4 $ હોય, તો તેના પ્રથમ $40$ પદોનો સરવાળો........ છે.
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $2n^2 + 5n$ હોય, તો તેનું $n$ મું પદ......... છે.
જો એક વધતી સમાંતર શ્રેણી $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ નો વિચરણ $90$ હોય તો આ સમાંતર શ્રેણીનો સામાન્ય તફાવત શોધો
જો $a, b$ અને $c$ સમાંતર શ્રેણીમાં હોય, તો $2^{ax + 1}, 2^{bx + 1},$ અને $2^{cx + 1} , x \neq 0$ એ.....