જો $f:[-5,5] \rightarrow \mathrm{R}$ વિકલનીય વિધેય હોય અને $f^{\prime}(x)$ ક્યાંય શૂન્ય ના બને તો સાબિત કરો કે $f(-5) \neq f(5).$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $f:[-5,5] \rightarrow R$ is a differentiable function.

Since every differentiable function is a continuous function, we obtain

a) $f$ is continuous on $[-5,5].$

b) $f$ is continuous on $(-5,5).$

Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that

$f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}$

$\Rightarrow 10 f^{\prime}(c)=f(5)-f(-5)$

It is also given that $f^{\prime}(x)$ does not vanish anywhere.

$\therefore f^{\prime}(c) \neq 0$

$\Rightarrow 10 f^{\prime}(c) \neq 0$

$\Rightarrow f(5)-f(-5) \neq 0$

$\Rightarrow f(5) \neq f(-5)$

Hence, proved.

Similar Questions

ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in  [1, 6]$ માટે $f (1) = -2$  અને $ f'(x) \geq 2$  હોય, તો......

ધારો કે  વિધેય $f$ એ  $[\mathrm{a}, \mathrm{b}]$ પર સતત અને $(a, b) $ પર દ્રીતીય વિકલનીય છે. જો દરેક $x \in(a, b)$ ; $f^{\prime}(\mathrm{x})>0$ અને  $f^{\prime \prime}(\mathrm{x})<0,$ હોય તો કોઈક  $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ ;  $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$  $>$ 

  • [JEE MAIN 2020]

જો $ f(x)  $ એ $ [2, 5]$ અંતરાલમાં વિકલનીય હોય કે જ્યાં $ f(2) = 1/5 $ અને $ f(5) = 1/2$ થાય, તો અસ્તિત્વ ધરાવતી સંખ્યા $c, 2 < c < 5 $ કે જો માટે $ f'(c) = ……$

અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો  $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો  . .. .  .

  • [JEE MAIN 2021]

ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ  : $f(x)=x^{2}-1,$ $x \in[1,2]$