જો $f:[-5,5] \rightarrow \mathrm{R}$ વિકલનીય વિધેય હોય અને $f^{\prime}(x)$ ક્યાંય શૂન્ય ના બને તો સાબિત કરો કે $f(-5) \neq f(5).$
It is given that $f:[-5,5] \rightarrow R$ is a differentiable function.
Since every differentiable function is a continuous function, we obtain
a) $f$ is continuous on $[-5,5].$
b) $f$ is continuous on $(-5,5).$
Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that
$f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}$
$\Rightarrow 10 f^{\prime}(c)=f(5)-f(-5)$
It is also given that $f^{\prime}(x)$ does not vanish anywhere.
$\therefore f^{\prime}(c) \neq 0$
$\Rightarrow 10 f^{\prime}(c) \neq 0$
$\Rightarrow f(5)-f(-5) \neq 0$
$\Rightarrow f(5) \neq f(-5)$
Hence, proved.
ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in [1, 6]$ માટે $f (1) = -2$ અને $ f'(x) \geq 2$ હોય, તો......
ધારો કે વિધેય $f$ એ $[\mathrm{a}, \mathrm{b}]$ પર સતત અને $(a, b) $ પર દ્રીતીય વિકલનીય છે. જો દરેક $x \in(a, b)$ ; $f^{\prime}(\mathrm{x})>0$ અને $f^{\prime \prime}(\mathrm{x})<0,$ હોય તો કોઈક $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ ; $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$ $>$
જો $ f(x) $ એ $ [2, 5]$ અંતરાલમાં વિકલનીય હોય કે જ્યાં $ f(2) = 1/5 $ અને $ f(5) = 1/2$ થાય, તો અસ્તિત્વ ધરાવતી સંખ્યા $c, 2 < c < 5 $ કે જો માટે $ f'(c) = ……$
અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો . .. . .
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=x^{2}-1,$ $x \in[1,2]$