ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ  : $f(x)=x^{2}-1,$ $x \in[1,2]$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if

a) $f$ is continuous on $[a, b]$

b) $f$ is continuous on $(a, b)$

c) $f(a)=f(b)$

Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

$f(x)=x^{2}-1$ for $x \in[1,2]$

It is evident that $f$, being a polynomial function, is continuous in $[1,2]$ and is differentiable in $(1,2).$

$f(1)=(1)^{2}-1=0$

$f(2)=(2)^{2}-1=3$

$\therefore f(1) \neq f(2)$

It is observed that $f$ does not satisfy a condition of the hypothesis of Roller's Theorem.

Hence, Roller's Theorem is not applicable for $f(x)=x^{2}-1$ for $x \in[1,2].$

Similar Questions

 વિધેય $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ માટે $f^{\prime}\left(\frac{4}{3}\right)=0$ સાથે રોલનું પ્રમેટ પળાતું હોય, તો કમયુક્ત જોડ $(a, b) = ...........$

  • [JEE MAIN 2021]

જો $a + b + c = 0 $ હોય, તો $(0, 1) $ અંતરાલમાં સમીકરણ $3ax^2 + 2bx + c = 0 $ કેટલા બીજ ધરાવે ?

$c$ ની કિમત મેળવો કે જેથી વિધેય $f(x) = log{_e}x$ એ અંતરાલ $[1, 3]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે.

અંતરાલ $[0, 1]$ માં નીચે આપેલ વિધેય માટે લાંગ્રજય મધ્યકમાન પ્રમેય લાગુ ન પાડી શકાય.

  • [IIT 2003]

ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[-2,2]$