यदि $f:[-5,5] \rightarrow R$ एक संतत फलन है और यदि $f^{\prime}(x)$ किसी भी बिंदु पर शून्य नहीं होता है तो सिद्ध कीजिए कि $f(-5) \neq f(5)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $f:[-5,5] \rightarrow R$ is a differentiable function.

Since every differentiable function is a continuous function, we obtain

a) $f$ is continuous on $[-5,5].$

b) $f$ is continuous on $(-5,5).$

Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that

$f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}$

$\Rightarrow 10 f^{\prime}(c)=f(5)-f(-5)$

It is also given that $f^{\prime}(x)$ does not vanish anywhere.

$\therefore f^{\prime}(c) \neq 0$

$\Rightarrow 10 f^{\prime}(c) \neq 0$

$\Rightarrow f(5)-f(-5) \neq 0$

$\Rightarrow f(5) \neq f(-5)$

Hence, proved.

Similar Questions

माना $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$, तब $x \in [0,1]$ के लिए  $ f$  पर रोले की प्रमेय मान्य है, यदि $\alpha = $

  • [IIT 2004]

उन बिंदुओं, जहाँ वक्र $\mathrm{y}=\mathrm{x}^5-20 \mathrm{x}^3+50 \mathrm{x}+2$, $\mathrm{x}$-अक्ष को काटता है, की संख्या है____________

  • [JEE MAIN 2023]

अंतराल $ [0, 1] $ में लैंगरेंज मध्यमान प्रमेय निम्न में से किसके लिए लागू नहीं है

  • [IIT 2003]

यदि फलनों $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ तथा $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ का एक उभयानिष्ठ चरम बिन्दु है, तब $a+2 b+7$ बराबर है :

  • [JEE MAIN 2023]

वास्तविक गुणांक वाले बहुपद $g ( x )$ के लिये, माना $g ( x )$ के विभिन्न वास्तविक मूलों की संख्या $m _{ g }$ से दर्शाते है। माना वास्तविक गुणांक वाले बहुपदों का समुच्चय $S$ है जो

$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\}$ द्वारा परिभाषित है। बहुपद $f$ के लिये, माना $f^{\prime}$ तथा $f^{\prime \prime}$ क्रमशः इसके प्रथम तथा द्वितीय कोटि अवकलज है। तब $\left( m f^{\prime}+ m f^{\prime \prime}\right)$, जहाँ $f \in S$ का न्यूनतम संभव मान होगा

  • [IIT 2020]