નીચેના પૈકી .......... વિકલ્પ માટે ઘટનાઓ $A$ અને $B$ નિરપેક્ષ થશે :
$A$ અને $B$ એ પરસ્પર નિ :શેષ છે
$P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
$P(A)=P(B)$
$P(A)+P(B)=1$
$A$ એ સત્ય બોલો તેની સંભાવના $\frac{4}{5}$ છે અને $B$ એ સત્ય બોલે તેની સંભાવના $\frac{3}{4}$ છે,તો એક સત્ય વિધાન વિશે બંને ને બોલવાનુ કહેતા બંનેમાં વિરોધાભાસ થાય તેની સંભાવના મેળવો.
જો $A$ અને $B$ બે ઘટનાઓ છે કે જેમાં $P\,(A) = 0.3$ અને $P\,(A \cup B) = 0.8$. જો $A$ અને $B$ એ નિરપેક્ષ ઘટનાઓ હોય,તો $P(B) = $
જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$ અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$
જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો.
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો બેમાંથી એકને જ સવાલનો ઉકેલ મળે તેની સંભાવના શોધો