નીચેના પૈકી .......... વિકલ્પ માટે ઘટનાઓ $A$ અને $B$ નિરપેક્ષ થશે :
$A$ અને $B$ એ પરસ્પર નિ :શેષ છે
$P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
$P(A)=P(B)$
$P(A)+P(B)=1$
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : બંનેમાંથી ઓછામાં ઓછી એક વ્યક્તિ પરીક્ષામાં પાસ નહિ થાય.
ત્રણ વ્યક્તિ $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.
એક વિદ્યાર્થીની અંતિમ પરીક્ષાના અંગ્રેજી અને હિંદી બન્ને વિષયો પાસ કરવાની સંભાવના $0.5$ છે અને બંનેમાંથી કોઈ પણ વિષય પાસ ન કરવાની સંભાવના $0.1$ છે. જો અંગ્રેજીની પરીક્ષા પાસ કરવાની સંભાવના $0.75$ હોય, તો હિંદીની પરીક્ષા પાસ કરવાની સંભાવના શું છે?
આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ નહિ અને $B$ નહિ) શોધો.
એક ખોખામાં $10$ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. તેમાંનો એક દડો કાળા રંગનો અને અન્ય લાલ રંગનો હોય તેની સંભાવના શોધો.