નીચેના પૈકી .......... વિકલ્પ માટે ઘટનાઓ $A$ અને $B$ નિરપેક્ષ થશે :
$A$ અને $B$ એ પરસ્પર નિ :શેષ છે
$P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
$P(A)=P(B)$
$P(A)+P(B)=1$
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
$A$ અને $B$ ઘટનાઓ પૈકી ઓછામાં ઓછી એક ઘટના બને તેની સંભાવના $0.6$ છે.જો $A$ અને $B$ ઘટનાઓ એકસાથે બંને તેની સંભાવના $0.2$ હોય,તો $P\,(\bar A) + P\,(\bar B) = $
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P( E-$ નહિ અથવા $F-$ નહિ) $= 0.25$, ચકાસો કે $E$ અને $F$ પરસ્પર નિવારક છે કે નહિ?
ત્રણ ઘટનાઓ $A , B$ અને $C$ ની સંભાવના અનુક્રમે $P ( A )=0.6, P ( B )=0.4$ અને $P ( C )=0.5$ આપેલ છે જો $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ અને $P(A \cup B \cup C)=\alpha$ જ્યાં $0.85 \leq \alpha \leq 0.95,$ હોય તો $\beta$ ની કિમત ........ અંતરાલમાં રહે છે
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો સવાલનો ઉકેલ મળે