If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that, $\mathrm{P}(\mathrm{A}) \frac{1}{4}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$

$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B^{\prime}}\right)$

$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left((\mathrm{A}^{\prime} \cup \mathrm{B})\right)$    $\left[A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}\right]$

$=1-P(A \cup B)$

$=1-[P(A)+P(B)-P(A \cap B)]$

$=1-\frac{5}{8}$

$=\frac{3}{8}$

Similar Questions

The probability that $A$ speaks truth is $\frac{4}{5}$, while this probability for $B$ is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact

  • [IIT 1975]

If the odds against an event be $2 : 3$, then the probability of its occurrence is

One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is

The probabilities of three mutually exclusive events are $\frac{2}{3} ,  \frac{1}{4}$ and $\frac{1}{6}$. The statement is

If the odds in favour of an event be $3 : 5$, then the probability of non-occurrence of the event is