If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$
It is given that, $\mathrm{P}(\mathrm{A}) \frac{1}{4}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$
$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B^{\prime}}\right)$
$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left((\mathrm{A}^{\prime} \cup \mathrm{B})\right)$ $\left[A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}\right]$
$=1-P(A \cup B)$
$=1-[P(A)+P(B)-P(A \cap B)]$
$=1-\frac{5}{8}$
$=\frac{3}{8}$
$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively
If $P(A \cup B) = 0.8$ and $P(A \cap B) = 0.3,$ then $P(\bar A) + P(\bar B) = $
India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point $0, 1$ and $2$ are $0.45, 0.05$ and $0.50$ respectively. Assuming that the outcomes are independents, the probability of India getting at least $7$ points is
The probability that a leap year selected at random contains either $53$ Sundays or $53 $ Mondays, is
If $A$ and $B$ are arbitrary events, then